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Abstract

Confidence in a computational prediction is enhanced if its
potential ‘error’ (the difference between the prediction and
nature’s outcome for the event being modeled) can be
credibly bounded.  To develop such bounds I first develop
a conceptual framework for designing and conducting a
suite of physical (model-validation) experiments and
calculations, then analyzing the results to characterize
prediction uncertainty under the experimental conditions
and to provide a basis for inferring the uncertainty of a
computational prediction in a system application
environment or configuration that cannot or will not be
tested.  Attendant issues and potential solutions are
discussed, then illustrated via a shock physics example.

Nomenclature

M(x:φ) computational model
x vector of model input variables
φ vector of model parameters
y*(x) computational prediction at x
y(x) experimental outcome at x
ex prediction error at x
E(.) expectation
δx expected value of ex
var(.) variance
σx

2 variance of ex  at x
df degrees of freedom
t.025(f) the .025 quantile on the t-distribution with f df

Introduction

Users of computational predictions, from designers to
decision-makers, need to be provided with information on
how accurate the prediction is and on what basis.  E.g., the
goal is a statement like “Based on our understanding of the
underlying physics, our ability to translate that
understanding to a computational code, and our analysis of
an extensive suite of experiments and corresponding
computations, we are confident that actual system
response will differ from the computational prediction by no
more than 30%.”  Such prediction uncertainty limits define
predictive capability and provide the necessary yardstick
against which a computational prediction can be compared
to a requirement.  Obtaining credible, defensible limits-of-
error for computational predictions of complex phenomena,
however, is an extremely challenging problem

Framework

Confidence in computational predictions comes (in large
part) from comparisons with data.  The term model-
validation[1, 2] is conventionally used for this comparison
and experimental programs are conducted for this purpose.
Model-validation experiments can range from single-
phenomenon tests, through a range of combined
phenomena tests, to system-level multi-phenomena tests.
Test units can range from simple geometric shapes of
single materials to complex assemblies.  At each level,
comparisons of computational predictions to experimental
results provide information on predictive capability.  My
view is that the full purpose of model-validation
experiments should be the measurement of predictive
capability and uncertainty.

Figure 1 is my view of this total process, set in the context
of comparing a computational prediction to a system
requirement.

Figure 1. Schematic for Characterization of Prediction
Uncertainty

The top ellipse in Fig. 1 depicts the intended use of the
computational tool: system requirements specify various
performance goals and the computational model will be
used to predict system performance in scenarios that
embody these requirements.  Comparing the prediction to
the requirement requires an uncertainty yardstick, or frame
of reference, depicted by the uncertainty ‘cloud’
surrounding the prediction.  To develop such a yardstick,
experiments and computations must be conducted –
depicted by the bottom ellipse.  The design of these
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experiments is driven by the system scenarios and the
structure of the computational model.  These experiments
and computations provide first for an evaluation of
prediction capability in the situations tested.  Next, and
most importantly, the ensemble of observed differences are
potentially the basis of an inference about prediction
uncertainty in the system applications of interest -- the
connection to the upper ellipse.

To frame this paper’s discussion I mathematically represent
a prediction generated by a computational simulation as:

y*(x) = M(x:φ), (1)

where M(x:φ) represents the computational model of the
phenomenon of interest; x is model input variables, φ is
model parameters; and y* is the model output or prediction.
All the terms in expression (1), x, φ, and y*, could be
vectors or fields.

In general, the model’s input vector x describes a physical
entity and the environment to which it is subjected.  This
vector will include physical dimensions, materials,
environmental variables, and initial and boundary
conditions.  The numerical model parameter vector φ
includes parameters that are needed to specify material
response in the model.  Think generally of φ as constants
such as transfer coefficients in the set of equations on
which M is based.  I further assume that all numerical
aspects of M(x:φ), such as grid size, time steps, and
convergence criteria, are fully specified in M.  The
computer model, M(x:φ), is thus an operator that transforms
input x into the predicted result y*.  This transformation is
assumed to be deterministic in this paper in the sense that
for a given specification of x and φ the code always gives
the same y*.  Repeated runs of a deterministic code, as in
a Monte Carlo analysis, however, will be considered.

As an example of this mathematical representation, in a
Sandia case study pertaining to the vaporization of foam in
a thermal environment, x included the Temperature-time
environment to which a foam specimen is subjected as well
as variables that define the foam composition and
geometry.  The parameter vector φ  included the  ‘activation
energies’ associated with various chemical structures in the
foam.  The response y* was the remaining solid fraction of
the foam specimen as a function of time.

Now, corresponding to the prediction, y*(x), consider an
experiment conducted at the specified x and represent its
outcome by y(x).  I define the prediction error of the model
at x as

ex = y(x) – y*(x) (2)

Evaluating model predictive capability means
characterizing ex  at selected x-points or over selected x-
regions.  This evaluation requires selecting a set of x-
points, then obtaining computational predictions and
experimental results for each.

Statistical Model

All computational models, no matter how extensively the
underlying processes are modeled, are approximations to
nature.  Things happen in nature that are not captured by a
computational model.  Consequently, a variety of random
and systematic effects can contribute to prediction error.
For these reasons, my approach to model-validation
experimental design, data analysis, and the subsequent
quantification of prediction uncertainty will be via the
statistical model:

y(x) = y*(x) + ex, (3)

where ex is a random variable with an unknown
probability distribution that possibly depends on x.

George Box[3] has stated, “All models are wrong, but some
are useful.”  The nature of ex in (3) will determine the
usefulness of a model.  Understanding the nature of ex
should be the purpose of model-validation experimentation.

Equation (3) is a statistical model of the relationship
between the ‘true’ experiment outcome y and model
prediction y*.  What we observe in practice are
measurements of nature, so observed ex contains
measurement error.  Methods for adjusting for this source
of variation in the observed prediction errors will be
discussed below.  For the moment, I treat measured y as
nature’s y.

Viewing the differences between experiment and model as
statistical has engineering precedent.  For example, in
bridge design, civil engineers us a mathematical model for
“scour” – the erosion of soil around a bridge’s foundation
due to river flooding[4].  This model is a function of soil type,
flood magnitude, river velocity and other pertinent
variables.  For predictions civil engineers incorporate an
additional “modeling factor” to represent the deviation of
actual scour depths from the theoretical model.  This
modeling factor corresponds to ex in (3).

A key aspect of the statistical model (3) is that the
probability distribution of prediction error is unknown.
Thus, measuring prediction capability is fundamentally
approximate and nondeterministic, that is, fundamentally
statistical.  Any measure of predictive capability and the
confidence derived thereby will be derived from the
experimental data and corresponding computational
predictions and hence will be an “estimate” in the statistical
sense.  In terms of (3), the problem of assessing model
prediction capability is first to estimate the probability
distribution of ex at the x-points at which computations and
experiments are conducted. This must then be followed by
estimation of the distribution of ex at x-points pertaining to
physical entities and environments that have not, can not,
or will not be tested.  From this estimated distribution one
can statistically bound ex and hence statistically bound the
difference between computational prediction and nature.  A
further objective is to characterize the reliability of the
estimate.  Statistical confidence and tolerance limits[5]

provide such characterizations.
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Implementing the process represented by Fig. 1 and the
analysis based on eq. (3) leads to a variety of issues.  The
next two sections discuss some of the problems that are
likely to be encountered and indicates directions to take.

Experimental Design

In broad terms, model-validation experimental design
means selecting a set of x -points (that define test
hardware and environments) at which to do experiments
and computational predictions.  In detail, this also means
determining experimental plans that specify the test
hardware, methods, conditions, instrumentation, data
collection, and post-processing techniques used to obtain
information required for subsequent data analyses.  All of
these elements have different nuances for experiments that
are designed for model validation studies as opposed to
phenomena discovery or exploration. It is critical to
emphasize this point.  It is also important to recognize at
the outset that measuring predictive capability has
profound implications for the experimental sciences, not
just the analytic.

The role of experimental design in the inference problem is
illustrated in Fig. 2 in which the space of validation
experiments and system applications is defined by two
meta-variables, configuration and environment.  Because
of economic and other reasons it may not be possible to
test actual systems in their required environments.  (For
this reason, Fig. 2 depicts an extrapolation situation;
intuitively, interpolation should be easier.)  Thus, we have
to extend what we can learn about predictive capability
(represented by the prediction errors, {y(x)-y*(x)}, in Fig. 2)
at the selected x-points where we can evaluate it to an
inference about predictive capability where we cannot.
This inference requires an extension of the model itself plus
an extension of what we know about unmodeled
phenomena, as represented by the observed prediction
errors.  Making this extension successfully and credibly
requires subject-matter knowledge about the axes along
which we can make such extensions and it requires a suite
of experiments suitably located in the configurration-
environment space to provide the data necessary to make
such extensions.  The design of this set of experiments
thus has to be driven by the ultimate applications for which
computational predictions and a model’s predictive
capability are required, as was discussed above.

Figure 2. Inferring predictive capability

a. Experimental Objectives.

Meaningful validation experiments are designed to meet
one or more explicit objectives. In general, the experiments
conducted (1) should provide a sufficient test of predictive
capability for the selected experimental situations and (2)
the collective set of experiments and associated
computational predictions should provide a basis for
making the desired inference of predictive confidence.

There are various ways to translate the first objective into a
basis for experimental design.  For example, one measure
of predictive capability at x is the standard deviation of
prediction error, ex, at that point.  One could define the
objective to estimate this standard deviation within P% and
then derive the number of experiments required to achieve
that precision.  These experiments could either be n
replications at the selected x-point or n total experiments at
different x-points within a region within which it is
reasonable to expect a constant standard deviation.

The conduct of a validation experiment also influences how
well predictive capability can be measured.  As mentioned
above, a variety of random and systematic factors can
differentiate computational prediction and nature.
Validation experiments need to be conducted in ways that
allow these factors to be manifested as they would in an
application of interest.  For example, predictive capability
measured in a tightly-controlled, pristine lab environment
may not be appropriate for inferring predictive capability for
predictions for a much less controlled, noisier application
environment.  The objective of assessing predictive
capability in a specific application influences experimental
design in terms of both what is controlled and what is not
controlled in the experiments.

Time, resources, and experimental capability constrain
validation experimental design and conduct.  Such
constraints must be balanced against the experimental
objectives in arriving at a plan for model validation
experimentation.  A difficult decision will have to be made
as to whether a meaningful evaluation of predictive
capability is possible under existing constraints in any given
situation.

b. Experiment-Model Compatibility.

The computational and experimental elements of the model
validation process cannot be executed in isolation.  The
vector x needs to be meaningful to both the experimentalist
and modeler in order to align experiment and model so that
both computational predictions and experiments at selected
x-points can be run and compared.  Further, this alignment
needs to be meaningful in terms of the system scenarios
for which computational predictions are required.

The discussion so far has assumed that the full x-vector
could be controlled or measured in an experiment.   If the
modeler’s x-vector contains variables that have no
experimental meaning, this is not the case and it may not
be possible to make meaningful comparisons.  If the
modeler’s x-vector requires measurements that cannot be
made, the result will be increased prediction uncertainty.
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To avoid this misalignment, there may be a need to
develop new experimental and instrumentation capabilities.
The definition of the variables in the x-vector is not just a
modeling issue.  The experimenter, the requirements-
setter, and the decision-maker have to be able to operate
and communicate in terms of this x-space.

c. Simplification.

 The objective of characterizing predictive capability over
some high-dimensional x-space can quickly require an
experimental design that exceeds available or reasonable
resources.  One way to avoid this problem is to vary only a
subset of the variables in x while holding the others fixed at
nominal or bounding, values.  Statistical experimental
design methods[6] should be used to efficiently and
adequately explore the specified x-space.

Model simplification is another route to reduce the cost of
predictive capability measurement.  For example, suppose
a model contains high-order effects or phenomena that
cannot be controlled or measured in an experiment.  It may
be more appropriate to make computational predictions
without those effects in the model and then capture those
effects experimentally through the observed prediction
errors.  Where computational resources are constraining
factors, model simplification increases in importance and
attractiveness, but may also increase the complexity of
inferring confidence from the validation process.

Analysis.

After conducting a suite of experiments and computational
predictions the next task is to analyze the resulting data,
{xi, y(xi), y*(xi) : i = 1, 2, … n}.  It is important to note that
the subscript i refers to distinct experiments.  Both y and x,
though, may be fields or vectors containing thousands of
measurements or calculations.  It is decidedly not the case,
however, that thousands of measurements, e.g., of
temperature over a fine grid of space and time, for one
experiment is equivalent to thousands of separate
experiments.  The number and nature of the experiments
conducted will determine the precision with which
predictive capability is measured, not the number of
measurements per experiment.

Given the computational and experimental outcomes from
the suite of experiments, the objective of the analysis of
these results is to measure and/or estimate predictive
capability.  The following subsections address issues that
arise in this analysis.

a. Metrics.

Predictive capability at an x-point can be characterized by a
variety of “parameters” (in the statistical sense of being a
characteristic of a probability distribution) of the probability
distribution of ex.  The expected value and the standard
deviation of ex are two important possibilities. Others might
be the square root of the expected squared error, the 99th

percentile of the distribution of absolute error; the lower and
upper 95th percentiles on the distribution of ex; and others.

If the computational model was designed to be
conservative on the high-side (i.e., ex is intended to be
negative), the metric of interest might be Prob(ex < 0).
When ex has a normal distribution all of these distributional
characteristics are functions of the two parameters that
characterize a normal distribution, the mean and the
standard deviation.

Any of these measures of predictive capability must be
estimated from the experimental and computational results.
With limited data, estimation uncertainty will be
appreciable.  Statistical methods account for estimation
uncertainty by methods such as confidence and tolerance
limits[5].  For example, a conclusion might be stated as: with
90% confidence the upper 95th percentile of the distribution
of ex is no more than UL90/95.  The essential point is that
any “metric” of predictive capability derived from the model
validation process will be a statistical estimate and the
reliability of that estimate must also be evaluated and
communicated.

b. Choice of Analysis Variables.

In both experiments and computations there are a large
number of variables that can be observed and compared.
Making the analysis manageable and the results
meaningful and communicable requires a careful selection
of variables for which to evaluate predictive capability.

The selection of variables should first be driven by system
requirements.  If the requirement is that peak strain at a
given location should not exceed some value, for example,
then the model validation objective is to measure the
predictive capability pertaining to calculated peak strain at
that location.  While it would add confidence in the
computational model to know that the complete strain vs.
time history at various sites in the test device can be
reasonably well predicted, it is really not appropriate to
devote a lot of analysis to measuring predictive capability
over an extensive time and space grid.  This requirements
focus is also a way to greatly reduce the dimensionality of
the data, which in general may be time-histories of
responses such as acceleration, strain, or temperature in
time and space, to a small number of ‘integral’ variables
such as peak acceleration or the time to reach critical
temperatures at selected points in a system or component.

c. Inference.

The inference bridge in Fig. 2 can be constructed if the
underlying scientific relationships are known to extend over
a region containing both the xA and the xi, and if there is a
credible basis for similarly extending the error distribution
which, after all, reflects factors in nature not captured by
the scientific model.  When there is a mathematical
connection, statistical methods can account for and reflect
the ‘distance’ between these points.  The greater the
distance, the greater the prediction uncertainty.  In passing,
I note that the spatial representation of the experimental
design (in x-space) and inference problems suggests that
spatial statistical methods[7], such as kriging, can be used
to model a metric, such as the estimated standard
deviation at x, as a function of x, then estimate the value of
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that metric at xA and estimate the uncertainty of that
estimate.

There may be many situations in which a
mathematical/statistical inference bridge cannot be built.  In
such cases, the linkage may have to be achieved through
expert judgment.  E.g., “In our suite of model-validation
experiments, we never observed a prediction error greater
than 20%.  In light of the additional complexity of the
system application, we believe the prediction error could be
no worse than 40%.”

If no credible inference is possible, one may have to re-
examine everything from requirements to system design to
test program.  More system-like testing may be required to
reduce the inferential gap.  A system may have to be
redesigned so as not to be vulnerable to an environment
whose effect cannot be well-predicted computationally.
The sort of framework proposed here provides a vehicle for
addressing such fundamental issues.

d. Model Tuning.

When the analysis of prediction error data shows evidence
of a bias, one can potentially either incorporate that bias
into subsequent prediction error limits, in essence
calibrating out the model’s bias, or one can modify the
model in an attempt to remove the bias.  One mode of
modification is to adjust the φ parameters, which may often
be uncertain estimates of, e.g., materials properties.  Such
‘tuning’ can be suspect, but there are legitimate analyses
that compensate for parameter estimation in characterizing
the uncertainty of subsequent predictions.

Consider the case of a simple linear model, y* = α + βx.  If
an experiment is done at x1, yielding y1, then there are
infinite ways to adjust α and β to achieve perfect
agreement between y* and y1.  No rational statement could
be made, however, about predictive capability for the
adjusted model.  If a second experiment is done at x2, then
a unique α and β can be found to achieve perfect
agreement at both points, but no statement about
subsequent predictive capability can be made (obviously, a
claim of perfect predictions is bogus).  For three or more
experiments, however, we can use standard statistical
methods to estimate α and β and characterize the
prediction error for subsequent predictions based on these
estimates.  The example in the next section demonstrates
this analysis.  This sort of prediction-error analysis that
accounts for tuning needs to be extended to the situation of
more complex, higher-dimensional models.

For complex codes and corresponding experiments, one
computation and one experiment can each yield thousands
of data-values – traces of multiple response variables over
time and space.  There may be many parameters in φ that
could be adjusted to improve the agreement between
computation and data.  Even when there is a scientific
basis for selecting the parameters on which to tune the
computation, the residual errors over time and space after
tuning to one experimental outcome do not contain any
information about predictive capability.  One could only

infer at best that: If another similar experiment were run
and tuned, the resulting residual errors should look like the
post-tuning errors obtained in the first experiment.  One
could not infer: If we used the tuned model to make a
prediction in a similar experiment, the error of that
prediction should be in line with the post-tuning errors we
obtained in the initial experiment.

e. Distributional Predictions

A deterministic code calculates a prediction for a single,
completely specified situation.  Predictions of interest,
though, are often ‘statistical,’ or distributional predictions,
not single point predictions, as considered up to this point.
For example, in a weapon systems context, systems are
not identical and delivery and target conditions, such as
impact angle, impact velocity, and target hardness, vary
from mission to mission.  In such situations the objective
may be to predict the resulting probability distribution of
some characteristic of weapon-performance, such as
maximum shock on a key component, over some
probability distribution of system variables and
environmental conditions, and then to predict
characteristics of this distribution.  These characteristics
could be the distribution’s mean, its upper two-sigma point,
or the probability of exceeding a failure threshold.

Suppose that xr, a subset of the variables in x, is to be
treated as random to obtain a distributional prediction.
Suppose further, as a starting point, that the probability
distribution of xr is a given.  Our objective is to estimate the
resulting distribution of y and parameters associated with it.
The statistical model specified above in (3) provides the
means to do this, given appropriate experiments and data.

The law of total variance[8] says that

var(y) =  varx[E(y|x)] + Ex[var(y|x)], (4)

where var(.) denotes variance, E(.) denotes expectation,
and | denotes conditioning.  The subscript indicates the
random variable over which these moments are calculated.
In words, (4) says that the unconditional variance of y is the
sum of the variance of the conditional expectation of y,
given x, and the expected value of the conditional variance
of y, given x.  Applying this relationship to the problem at
hand leads to:

varr(y) = varr[y*(x) + δx] + Er[var(ex)], (5)

where the subscript r denotes that the indicated variance or
expectation is with respect to the distribution of xr.

Suppose, to simplify things for this discussion, that δx = 0,
for all x in the x-region of interest.  Then (5) becomes

varr(y) = varr(y*) + Er[σx
2]. (6)

Propagation of the assumed distribution of xr through
M(x:φ), by methods such as Monte Carlo, provides an
estimate of the first right-hand term in (6).  Model-validation
experiments and data analysis, if successful, provide an
estimate of σx

2, as a function of x.  The expectation of this
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function with respect to the distribution of xr could then be
calculated or approximated to estimate the second right-
hand term in (6).  In the ideal situation in which σx is
independent of x in the region of interest, the second right-
hand term is simply σ2, the variance of the difference
between nature and computation.  In either case I call σx

2

the ‘extra-model’ variability.  Similarly to (6), other
functionals of the distribution of y, such as an exceedance
probability, would have to be estimated by folding in the
extra-model variability represented by the distribution of ex.

Equation (6) shows that the role of the extra-model
variability is not to provide bounds on the computational
prediction, as was the case for point predictions.  Rather, it
is to add an additional variance component to the analysis;
the effect of this addition is to inflate the variance one
would get from propagation through the code.  By itself, the
code propagation variance, the first right-hand term in (6),
underestimates the variance of nature’s y, the left-hand
term.  If the code propagation variance, varr(y*), was used
as an estimate of nature’s variation, then, e.g., failure
probabilities would tend to be underestimated, sometimes
drastically, as will be shown below, even if the model has
been deemed valid via a hypothesis test.  To obtain valid
distributional predictions it is necessary to combine the
estimated ‘extra-model variability’ with the estimated
model-propagated variability.

Traditional code uncertainty-propagation analyses work the
first right-hand term in (6), in various manifestations.  Much
research has been and continues to be conducted trying to
wring out one more significant digit in approximations to
this first term, all the while ignoring the second term
(sometimes of necessity in situations in which meaningful
model-validation experiments cannot be run).  The only
way to know whether the second term is ignorable is to run
the model-validation experiments and perform the analyses
to evaluate it.  Estimating the second term and the bias
function, δx, should be the objective of model-validation
programs.  This is a much harder problem to work.  It
requires designing and running experiments, not just
conducting computer exercises.  It requires test facilities.  It
requires collaboration with experimentalists.  It is messy.
But it is necessary if credible measures of predictive
capability are to be obtained.  See Aeschliman and
Oberkampf[9] for discussions and illustrations on this point
in the context of fluid dynamics.

Example.

To illustrate the concepts and methods of prediction
uncertainty quantification as applied to a linear model
situation, I consider the model and a portion of the data
considered by Hills and Trucano[10].  The situation of
interest is the impact of a small aluminum pellet on an
aluminum plate.  Hills and Trucano use the CTH shock
physics code[11] to predict shock wave velocity in the
aluminum plate as a function of particle velocity, which is
one-half the pellet’s impact velocity.

To a good approximation, for the material and geometry
considered and over the range of particle velocities of

interest, the CTH predictions are well-fitted by the linear
model:

Us* = 5263 + 1.368Up,     (7)

for Up between roughly 300 and 4000 m/s, where Us is
shock wave velocity and Up is particle velocity, both in m/s.
Suppose for the sake of illustration that we are interested in
predictions in the neighborhood of Up = 3500 m/s.  At Up =
3500 the model prediction is Us* = 10,051 m/s.  What can
we say about prediction-uncertainty bounds associated
with this prediction?

For this illustration, I will use six of the 232 tests reported
by Hills and Trucano as my illustrative model-validation
experiments – three experiments near Up = 2000, three
near Up = 3000.  Limiting the amount of data is
representative of the situation in which the cost of testing
constrains the amount of testing that can be done.  The
experimental limits on Up, relative to the Up of interest, are
representative of the situation in which available test
facilities cannot achieve the application environment; thus
extrapolation, as in Fig. 2, is required.  The experimental
results, the corresponding computational predictions, and
the observed prediction errors are given in Table 1.

Table 1.
Model-Validation Experiment Results, Predictions, and

Prediction Errors
(All values are in units of m/s)

Up Us Us* Us – Us*
1957 8054 7940 114
1959 8015 7943 72
2095 8114 8129 -15
2987 9401 9349 52
3030 9177 9408 -231
3031 9180 9409 -229

ave. = -40
RMS = 146

There is some evidence in Table 1 that the prediction
errors are more negative and more variable in the
neighborhood of Up = 3000 (the last three data rows in
Table 1) than they are near Up = 2000 (the first three
rows).  However, with such limited data, these sorts of
patterns are not too unlikely just by chance, so I will here
illustrate the analysis of these data based on the
assumption that prediction errors at specified values of Up
are normally distributed with a mean of zero and a constant
standard deviation σ, for Up ranging from 2000 – 3000 m/s.
With this set-up, σ is estimated by the root mean square
(RMS = square root of average squared-error) of the six
observed errors, namely s = 146 m/s.  Other analyses of
these data are provided by Easterling.[ 12]

Next I suppose that (experts say that) both the physics
model and the statistical model extrapolate on Up from
3000 to 3500 m/s.

Before proceeding with the prediction error analysis, it is
pertinent to discuss the possible sources of the observed
prediction errors.  One possible contributor is modeling
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error that introduces bias in the CTH predictions and
consequently to the linear approximation to these
predictions.  Though the limited data don’t definitively
indicate bias, there is an indication of bias in the pattern of
errors.  The full set of data, as shown in Hills and Trucano,
confirms this bias.  A second possibility is measurement
error.  The measured velocities, which are all we have to
analyze, no doubt differ from the actual velocities.  If we
know or have a good estimate of the variance of
measurement error, we can subtract it out of the observed
prediction-error variance.  A third possible contributor to
prediction error is the effects of variables not included in
the model.  Not all aluminum is identical; the pellets and
plates will vary dimensionally and compositionally; impact
angles may vary from test to test and differ randomly from
what is assumed in the calculations; surfaces are not
perfectly smooth, etc.  These sources of variability are not
in the above simple linear model.  In general, further
analyses are required try to quantify and eliminate sources
of variability that are not pertinent to predictions of interest.
On the other hand, we do not want to eliminate or under-
estimate sources of variability that would be present in an
application for which predictions are desired.

a. Point Prediction

Under the assumptions that the linear model (7) predicts
Us without bias and that prediction errors at Up’s in the
2000 – 3500 m/s range are normally distributed, with mean
zero and a constant standard deviation, σ, which is
estimated by s = 146 m/s, on six df (degrees of freedom),
various (statistical) inferences can be derived.  For
example, 95% prediction limits for a single future outcome
are given by +/- t.025(6)*s = +/- 2.447*146 = +/- 356 m/s.
Thus, at Up = 3500 m/s, the predicted shock wave velocity
for a single future test, at the 95% confidence level, is Us*
= 10,051 +/- 356 m/s = (9695, 10,407) m/s.

Probably of more interest than a bound on single outcomes
is a bound on the distribution of errors in future predictions.
For example, an upper 95% confidence limit on the upper
99th percentile of the distribution of prediction errors, a limit
that is termed an upper 95/99 statistical tolerance limit, is
given by 4.45*s = 650 m/s.  Thus, at Up = 3500, the
inference is that with 95% confidence, 99% of the
distribution of Us would fall below 10,701 m/s.  If, e.g.,
failure was defined as Us > 11,000 m/s, these results would
tell us that there is good reason to conclude that the failure
probability at Up = 3500 is less than .01, given the
assumptions on which this inference is based.  If the failure
threshold was 10,500 m/s, the data do not support that
strong of a conclusion, so further testing, or perhaps a
redesign, might be required to achieve a .99 reliability with
adequate confidence.

Other analyses by Easterling[12] consider a Up-dependent
error variance and a “tuned” model.

b. Probability Prediction.

Now, suppose for the sake of illustration that Up in a
pellet/plate impact scenario of interest is assumed to be
random, with a Normal distribution with mean µp = 3500

m/s, and standard deviation σp = 100 m/s.  Suppose further
that the failure threshold is Us =10,500 m/s.

Propagating the assumed distribution of Up through the
approximate CTH model, Us* = 5263 + 1.368Up (7), leads
to the result that Us* is normally distributed with a mean of
10,051 m/s and a standard deviation of 136.8 m/s.  Thus
the failure limit of 10,500 m/s is 3.28 sigmas above the
mean Us, in which case, the predicted failure probability is
.0005.  This is just the sort of prediction that is developed
from conventional code uncertainty analyses.  For the case
at hand, this prediction turns out to be quite optimistic;
because of the substantial extra-model observed in the
validation experiments.

When the variance of Up is estimated as in (6) by adding
the extra-model estimated error variance of σe

^2 = 1462 m/s
to the model-based variance, the total variance of Up is
estimated to 2002. Thus, the failure threshold is 2.24
standard deviations above the mean which corresponds to
a predicted failure probability is about  .013, nearly a factor
of 30 times the model-based prediction of .0005.
Accounting for the substantial uncertainty of the estimated
σe yields an upper 95% confidence limit on the failure
probability of .075, more than two orders of magnitude
greater than the model-based estimated probability!

c. Measurement-Error Adjustment.

The preceding analyses are based on the conservative
assumption that all of the observed extra-model variability
was due to unmodeled variables and effects in the
experiments.  In fact, measurement variability is a
component of the observed prediction errors and we would
like not to include it in our prediction uncertainty
quantification.  Our interest is predicting actual y, not
measured y.

If the measurement error variance is well-estimated, it can
be subtracted from the total variance estimates to provide a
more appropriate, less conservative, estimate of extra-
model variability.  For example, if the measurement error
standard deviation is assumed to be 90 m/s, which is about
1% of the measured Us values in Table 1, then, for the
case in which the original model is assumed to be
adequate, with a residual standard deviation estimate of
146 m/s, the adjusted estimate of the extra-model standard
deviation (assuming measurement error is independent of
Up) would be sqrt(1462 – 902) = 115 m/s.  With some
modification, the preceding analyses could be carried out
with this adjusted value and the results would be less
conservative.  If a 25 m/s standard deviation (again about
1% of the measured values) was assumed for measured
Up (the x-variable in the model), then this would translate
into error in Us* with a standard deviation of 1.368*25 = 34
m/s, leading to a further adjustment to a prediction error
standard deviation of  sqrt(1152 – 342) = 110 m/s.  If there
was reason to claim that total measurement error had a
standard deviation of around 150 m/s, then measurement
error accounts for all the observed prediction-error
variability, so we could conclude that extra-model variability
was negligible.  We would be in the happy situation in
which the model can be used as a surrogate for nature.
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Path Forward.

Implementing the general approach presented in this paper
will be difficult.  First, defining, then achieving an adequate
and efficient set of experiments and computations for
characterizing prediction error in the testable x-region will
be difficult for complex phenomena and high-dimensional x.
Next, extending what we learn about prediction error in
testable situations to a quantification of prediction
uncertainty in nontestable applications may be difficult or
impossible in many applications.  Solutions and work-
arounds will have to be application-specific, but the general
direction must be toward simplification – reduced
dimensionality, reasonable approximations.  Where
solution is not presently possible, we will at least have a
clear understanding of what the barrier is.

Implementing the proposed approach has substantial
implications for both experimentalists and modelers.  Both
experimental facilities and computational models may have
to be modified so that they are not only compatible, but
synergistic.  Again, solutions will have to be application-
specific.  Collaboration among experimentalists, modelers,
and analysts is essential.

The path forward is to ‘just do it.’  General guidelines can
be provided, but progress will come through
implementation.  By testing proposed methods on
increasingly difficult problems, we will develop an
understanding of these methods’ strengths and
weaknesses.

Conclusions

The primary points reached in this paper are:

1. The only way to measure ‘computational-prediction
uncertainty’ is via suites of experiments and
corresponding computations in testable environments
and configurations.

2. A critical, subject matter-based inferential link is
required to connect observed prediction errors in
experimental contexts to bounds on prediction errors in
untestable applications.

3. Model validation tests should be designed and
conducted in ways that permit a realistic estimate of
extra-model variability (prediction errors) in application
environments.

4. Extra-model variability, which is estimated via model
vs. nature experiments, should be included in
probabilistic predictions.  To omit this variability on the
assumption of model-validity can lead to serious
prediction error, particularly for reliability predictions.

5. There are trade-offs between model complexity and
fidelity vs. model prediction-uncertainty “quantifiablity”
that need to be addressed in any particular application.

6. Adequate quantification of prediction errors, even in
greatly simplified situations, can require a substantial
number of experiments.
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